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Several authors have derived closed-form option prices in models where the underlying
financial variable follows a diffusion process with the following two characteristics: (i) the
process has natural upper and lower boundaries; (ii) its diffusion coefficient is quadratic
in the current value of the variable. The present paper uses a probabilistic change-of-
numeraire technique to compute the corresponding option price formula. In particular, it
shows how to interpret the formula in terms of exercise probabilities which are calculated
under the martingale measures associated with two specific numeraire portfolios.

Introduction

In the option pricing model of Black and Scholes (1973), the underlying stock price
is lognormally distributed, hence has the full positive half-axis as its support. This
makes it difficult to apply the Black-Scholes model in situations where the underlying
financial variable possesses upper and lower bounds. Ingersoll (1989a, b) for example
argues that central bank intervention in the foreign exchange markets will tend to
moderate exchange rate fluctuations. He then develops an exchange rate model with
strict upper and lower stabilisation bounds, i.e., a model of a perfectly credible target
zone regime.

A second area where the assumptions of the Black-Scholes model run into diffi-
culties is the pricing of options on zero-coupon bonds. Indeed, it is well known that
modelling bond prices (or bond forward prices) as lognormal variables is tantamount
to introducing negative interest rates. This lead Biihler and Kasler (1989) to construct
a bond price model within the framework of Merton (1973) where the forward price of
the underlying zero-coupon bond is always strictly smaller than 1, so that the corre-
sponding forward interest rate remains positive throughout. More recently, Miltersen,
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Sandmann and Sondermann (1994) have proposed a model of the term structure of
interest rates where the forward price of the underlying bond for delivery at the matu-
rity date of the option has risk-neutral dynamics as in the Bihler-Kasler model, while
the associated once compounded forward rate follows a lognormal diffusion process.

The structure of the models of Ingersoll (1989a, b), Biihler and Kasler (1989) and
Miltersen, Sandmann and Sondermann (1994) is identical in so far as the underlying
financial variable is modelled as a diffusion process with the following two characteris-
tics: (i) the process has natural upper and lower boundaries; (ii) its diffusion coefficient
is quadratic in the current value of the variable. This specification is easily seen to
generalise the Black-Scholes model; in fact, the latter is obtained on choosing zero as
lower and +oo as upper bound.

It is remarkable that this generalisation preserves one of the most attractive fea-
tures of the Black-Scholes model, namely the existence of analytic formulae for the
prices of European call and put options. Ingersoll (1989a, b) and Biihler and Késler
(1989) compute these formulae by applying a judicious change of variable to the corre-
sponding fundamental partial differential equation for pricing derivatives.! The present
paper, by contrast, applies a probabilistic technique involving a simultaneous change
of martingale measure and numeraire which goes back to Jamshidian (1987) and El
Karoui and Rochet (1989). This technique makes the different steps in the calcula-
tion of the option price more transparent and easier to interpret in financial terms.
Moreover, it elucidates the structure of the pricing formula by decomposing the option
price in terms of two particular numeraire portfolios and the risk-neutral probabilities
associated with these.

The paper is organised as follows. Section 1 sets out the framework of our analysis
and introduces the change-of-numeraire technique. Section 2 presents a general ex-
pression for the price of a call option in the presence of strict upper and lower bounds
on the underlying relative price. Applying this result, Section 3 calculates the call
price in models where the underlying relative price has a quadratic diffusion term.
Section 4 then shows how the general result applies to the models of Biihler and Kasler
(1989), Miltersen, Sandmann and Sondermann (1994) and Ingersoll (1989a, b). Section
5 concludes the paper.

1 Martingale Measures, Numeraires,
and Contingent Claims

Fix a finite time interval 7 = [0,7], a probability space (9, F, P) and a filtration
(Fi)ieT satisfying the usual conditions. Fy is assumed to be almost trivial, and Fr = F.

Consider a financial market with continuous and frictionless trade in two primitive
assets, labelled 0 and 1, which pay no dividends in 7. Let their price processes S* (i =

'In fact, there is a slight difference in the approach taken. Ingersoll transforms the fundamental
PDE into Merton’s (1973) variation of the standard Black-Scholes PDE and then just uses the Black-
Scholes solution. Buhler and Kasler transform the fundamental PDE directly into the heat equation
and solve the latter in the usual way; see Késler (1991) or Rady and Sandmann (1994) for details.
This is also the approach adopted by Miltersen, Sandmann and Sondermann (1994).



0, 1) be positive semimartingales on (2, F, P, (F;):e7). Relative security prices are given
by the process X = §1/5°.

A probability measure () equivalent to P is called a martingale measure with respect
to asset 0 if X is a ()-martingale, i.e., if each X; is ()-integrable and

X, = EY[X7|F)]

for all t € T. Alternatively, such a measure @) is said to be risk-neutral with respect
to asset 0. Let [P, denote the set of these measures.

Assumption (M) P, is non-empty.

One element of I, denoted () and called the reference measure, will be held fixed
throughout the paper.

As in Harrison and Pliska (1983), a vector process § = (8°,6') is called an admissible
trading strategy if the following properties (i) — (iv) hold:

(i) 0 is predictable.

This expresses the informational restriction that trades can only be based on informa-
tion obtained prior to trading. To formulate the remaining three conditions, let

V) =057 + 015
denote the value process corresponding to 6.
(ii) V7 is non-negative.

(iii) ' is integrable with respect to X and the normalised value process satisfies
4 V@ t
t 0 1
S0y / ol dx,.
iS5 o

(iv) The normalised value process V?/5% is a Qp-martingale.

Condition (ii) rules out negative portfolio values. Condition (iii) states that all changes
in portfolio value are due to the assets’ performance rather than to injection or with-

2 (Condition

drawal of funds. In other words, admissible strategies are self-financing.
(iv) says that there are no expected gains from trade. It rules out arbitrage opportu-
nities and certain foolish strategies that throw away money.? The space of admissible
strategies will be denoted by O.

A positive process N is called a numeraire if there is a trading strategy § € O

such that N = V. Extending our previous definition, we call a probability measure ()

2A straightforward integration-by-parts argument shows that (iii) implies the more intuitive rep-
resentation

t t
v;:vou/ 92d5§+/ 0l ds}
0 0

for the value process, provided the integrals exist.
3Note that (iv) is the only condition that might depend on the choice of reference measure.



equivalent to P a martingale measure for numeraire N (or risk-neutral with respect to
N) if V?/N | the portfolio value expressed in units of the numeraire, is a ()-martingale
for any strategy 6 € ©. We shall write [Py for the set of all such measures, and P, if
N = 51,

Given the measure ()g and a numeraire N, define a probability measure Q)5 equiv-
alent to Qg (and hence to P) via the Radon-Nikodym derivative

T % 8
dQo — No 5§

Note that N/S? is a Qg-martingale by definition, so the right hand side of (1) has
indeed expectation equal to one under Qq. In case N = 51, we shall write Q; for the
measure defined by (1).

Lemma 1.1 Let N be a numeraire and Y a random variable with E?°[|Y'|/S9] < oc.

Then
Y

Nt

Y
EQo -
5

_ %

EQ~ _
N

Fi

g

for allt € T.

PROOF: The expectation on the left hand side is clearly well-defined and, by a version
of the Bayes rule,

of d
Qn Y _ B {d%—]g NLT Ft}
R Qo[ dQu
r E%[ |7
Using (1) and the fact that E?[Ny/S|F] = N,/S° completes the proof. |

Applying this lemma to Y = V{, we see immediately that Qn € Py. We call it
the martingale measure obtained from Qg by change of numeraire. If () and Q) are
obtained from Qg by changing the numeraire to N and N, respectively, then (1) implies

Qn _ Ne 5 N
dQy  No Np

Equations (1) and (2) are at the heart of the change-of-numeraire technique in deriva-
tive asset pricing.*

A contingent claim is a non-negative random variable " on (2, F) such that I'/S% is
Qo-integrable. A contingent claim is attainable if there exists a trading strategy 0 € O
that replicates the claim, i.e., that satisfies Vjf = I'. In this case, the portfolio value
V! determines the time ¢ arbitrage price m(T') of the claim. By property (iv) above,
this price can be calculated as

T
m([) = S} EQO[S—%

o

4Cf. El Karoui and Rochet (1989) or Geman, El Karoui and Rochet (1995). For a more de-
tailed examination of the relationship between numeraires and martingale measures see Conze and

Viswanathan (1991).



that is, without reference to the replicating strategy. More generally, consider an
arbitrary measure Q € [P, under which I'/S% is integrable. Independent of whether T
is attainable or not,

r
) = 575 g

is called the price under () of the claim at time ¢.5

.

2 European Call Options

Consider an option to receive at time 7' one unit of asset 1 in exchange for K" > 0 units
of asset 0. This is a slight generalisation of a classical European call option. Indeed,
the latter is just the special case where asset 0 is a default-free zero-coupon bond of
maturity T'.

The option has the following value at the exercise date:®

L= [sh— Ks9|”
or, equivalently,
[ = (Sh— KS9) 16

where

£={we: Siw) > KSh(w)}

is the event that the option ends ‘in the money’ and is exercised.

It is well known that the price of a European option can be expressed in terms of
exercise probabilities calculated under certain martingale measures. A variant of the
following result was derived by El Karoui and Rochet (1989).

Proposition 2.1 The option price under (Qq is
(1) = S} Qu (E|F) — KSP Qo (E|F)

where ()1 € Py is the measure obtained from Qg by changing the numeraire to asset 1.

PROOF: By definition,
St

1
S0 ¢

r
) =SB | o

f;| :S?EQO[

ft] — K SPER[1¢|F].

Lemma 1.1 implies that
St

1
S0 ¢

S? EQO [ f;| - Stl EQ1[15|ft] 5

5Jacka (1992) shows that a contingent claim I' is attainable if and only if it has the same initial
price F(?(F) under all @ € Py for which both d@q/d@ and dQ/dQ are bounded. Moreover, he shows
that for bounded I'/S%, the attainability of the claim does not depend on which reference measure
Qo was used to define the space of admissible trading strategies.

®By definition, [z]T = max{x, 0} for all real numbers .



hence the proposition. [

A different decomposition of the option price can be obtained when the relative

price X = S1/5° is bounded.

Assumption (B) There are constants 0 < ¢ < u < 400 such that
089 < St < uS?

for allt € T.

Consider two portfolios, the first of which is long one unit of asset 0 and short u™?
units of asset 1, while the second is long one unit of asset 1 and short ¢ units of asset

0.7 Let
U=258"—ytst

and

L=258"—1¢5°

denote the corresponding value processes. Under Assumption (B), these are positive
processes, hence numeraires.

Proposition 2.2 Under Assumption (B), the option price under Qg is

79D = _%{ (1—u™'K) L Qu(€|F) — (K — () U, Qu(E|F) }

1 —u

where Qu € Py and QQp € Py are the measures obtained from )y by changing the
numeraire to U and L, respectively.

PRrROOF: It is straightforward to check that

(1 —u'K) Ly — (K — ) Uy

1 Q0
ST_[XST: 1_u—1£
Thus,
1 —utK L K-t U
Qo 0 T 0 T
(D) == SY B [_50 le ]—"] - T % SY B [_5% le ]—"].

Lemma 1.1 now implies

Lt
SO ERo l le

f] = L, E°L[l¢|F]

St
and .
SO R0 [—515 ]—"t] = U, E9V[1¢|F).
ST
This is the desired result. [ |

1

TOf course, u~! is understood to be zero if u = 400.



We have again expressed the call price as a function of certain exercise probabilities,
this time evaluated under martingale measures associated with the numeraires U and

L.

1 mkaTCm A \_)ll"/_u ol AT oL L/l:x) UrTD1LIovwu 111 U1 111 Ul Ul Lmlwliflﬁ}mm Iﬂ
Ly /Ur or its inverse Zy = Ur/Ly:

K—1/
E = {wEQ: YT(w)>X7}

1l —ultK

1—u 'K
= Q: 7 _ .
{w - T(w) < K1 }

Ingersoll (1989a, b), Biihler and Késler (1989) and Miltersen, Sandmann and Sonder-
mann (1994) propose models where the law of the processes Y = L/U and 7 = U/L
under @y and @), is very simple, so that the above exercise probabilities are easy to
determine.

3 Models with a Quadratic Diffusion
Coefficient

The following assumption postulates that after a change of measure, relative asset
prices follow a diffusion process with quadratic diffusion coefficient. We shall see later
that the models mentioned at the end of the previous section are of this type. Let
constants ¢ > 0 and 0 </ < u < 400 be given.

Assumption (Q) There exists a Qo-Wiener process WO such that the process of rela-
tive asset prices X = S1/S59 solves the stochastic differential equation

dXt =0 (Xt — E)(l — u_lXt) thO
with initial value { < Xo < u.

Standard results from the theory of stochastic processes imply that the above stochastic
differential equation has in fact a solution. This solution is unique both in the strong
and weak sense, satisfies Assumption (B) and is a martingale; see for example Revuz
and Yor (1991) and Karlin and Taylor (1981). In particular, Qg is indeed risk-neutral
with respect to asset 0.

Note that the lognormal dynamics of Black and Scholes (1973) and Merton (1973)

are obtained as the special case where = 0 and u = 4o00.

3.1 Characterisation

It turns out that Assumption (Q) can be formulated equivalently in terms of the pro-
cesses Y = L/U or Z = U/L. Let Qu € Py and @, € IP, be the measures obtained
from Qo by changing the numeraire to {/ and L, respectively, and define & = (1—u~'/)o.

Lemma 3.1 Assumption (Q) is equivalent to each of the following two properties:

7



(i) There exists a Qu-Wiener process WY such that Y solves
dY, =6 Y, dW}
with initial valve Yy > 0.
(ii) There exists a Qp,-Wiener process WL such that 7 solves
dZ, = & Z, dW}

with initial value 7y > 0.

PROOF: Suppose Assumption (Q) holds. By Itd’s lemma and some algebra,®
dY, = &Y, {dW) + & (X, — () dt}

where & = u~!o. Define a process WY by dW! = dW? + & (X, — () dt with W} = 0.
We want to show that WV is a Wiener process under Q. By equation (2),

dQu _ Ur So  l—u'Xgp

on N Uo S% N 1—u_1X0 ‘

On the other hand,
d[l — u_lXt]
11— u_lXt

hence, by the formula for the martingale exponential,

= —6 (X, — () dWy,

t 52t
1—u'X, = (1 —u'Xp) exp (—&/ (X, —0)dW? — %/ (X, —1)? ds) )
0 0

In particular,

d T 52 T
dgi = exp (—&/0 (X, — ) dW? — ?/0 (X, — 1) ds) :

The Girsanov theorem now implies that WV is indeed a Qy-Wiener process; cf. Revuz

and Yor (1991).

8The following facts are used in the calculations. If

I
Y= 1 w1
then
dy 1—u14 d d*y  2u™t(1—u"1e)
2 = an — 2 =
de (1 —ulz)? dx? (1 —ulz)3
Moreover,
de (1 —u=ltz)? d d*v  —2u71(1 —u"lz)?
— and — =
dy 1—u-1¢ dy? (1 —u=1¢)?



To prove the converse implication (i) = (Q), suppose we have WY as in the lemma.
[t6’s lemma and some straightforward computations yield

dX, = o (X, = O)(1 —u™' X)) {dW] — &5 (X, — ) dt}.
Let W be the process defined by dW? = dWV — & (X, — () dt with W§ = 0. As

d[l — u_lXt]

TTuX, —5 (X = 0)dWF + 6% (X, — ()% dt,

the formula for the martingale exponential now implies

5.2

¢ ¢
1—u'X; = (1 —u"'Xp) exp (—&/ (Xs = 1) dWSU + ?/ (X, — 1) ds)
0 0

and

dQO 11— U_IXO - T U 5'2 T
_ _ X, —0)d _—/ X, — 02 ds .
dQU 11— u—lXT P (U/(J ( ) WS 2 Jo ( ) °

By the Girsanov theorem, W is a Wiener process under (.
Next, we want to show that (i) implies (ii). Let WY be a Qu-Wiener process as in
the statement of the lemma. By the formula for the martingale exponential,

1
Yi = Yy exp (& Wy — 5&%) .

Define a process Wt by dW} = —dW} + & dt with Wl = 0. As

dQ)p, Uy Ly Yr ( 1 )
— = = = eXx ,
dQu Lo Ur Y, P

eWE — =T
2
the Girsanov theorem implies that W7 is a Wiener process under ()r. By construction,
srL Lo
Yr =Yy exp —O'WT—I-§O'T ,
hence |
Zr = Zy exp (&WTL — ?QT) :
In other words, dZ; = &6 7, thL.

The converse implication (ii) = (i) follows in the same way. [

Thus, Assumption (Q) holds if and only if there is a change of measure that makes
the process Y (or Z) a driftless geometric Brownian motion whose ‘volatility’ (i.e.,
instantaneous standard deviation of returns) is 6. This is the key to our calculation of
the option price.



3.2 The Option Price

Let (Gi)ie7 be the filtration generated by the process X, and set G = Gr. The following
result is well known.

Proposition 3.1 Under Assumption (Q), any contingent claim I' with G-measurable
normalised payoff T'/SY is attainable.

PROOF: This is an immmediate consequence of the martingale representation property

of X on (2,G,Qo, (Gt)ie7); see Revuz and Yor (1991). |

This guarantees in particular attainability of the option to receive one unit of asset 1 in
exchange for K units of asset 0, as its normalised payoff [ST — K.S2]7/S9 = [ X7 — KT
is clearly measurable with respect to G.? Let ® denote the standard normal distribution
function.

Proposition 3.2 Under Assumption (Q), the option to receive one unit of asset 1 in
exchange for K units of asset 0 is attainable. For { < K < u, its time t arbitrage price
is

1

- 1 —u

() {0 = u™ K (S} = 18)) @(ef) — (K = 0)(S) —u™'S}) (e ) }

where

1 S} — 059 K—( 1
+ t t A2
= 1 —log ————+ =6*(T — 1
“ &«/T—t[ogS,?—u—lS} BT i T30 )]

and ¢ = (1 —u Y)o.

PRrROOF: We want to apply Proposition 2.2, so let Qy and (), be the measures obtained
from )y by changing the numeraire to U and L, respectively. To calculate the proba-
bility of exercise under Qpr and Qr,, let WY and W¥ be Wiener processes as in Lemma
3.1, so that

1
Y, =Y, exp (&WtU—§A2t)

and

1
Zy = Zy exp (& WtL - §A2t)

by the formula for the martingale exponential.
The properties of the Wiener process WY now imply

K -1
Qu(&|F:) = QU(YT > TR Yt)
K -1
= QU (log YT — loth > log m — log 1/75)

9For u < 400, moreover, the normalised payoff of the option is bounded, so attainability does not
depend on which reference measure was chosen to define the space of admissible trading strategies;
cf. Jacka (1992). To see this in the case © = 400, consider a put option and use put-call parity.

10



K-/ 1
= QU(&(W%ﬁ—VWU)>1%?ff—t—7'—bgyi+§&2@d—tﬂ

u K

1 K -1 1
= 0 |logV; —log ———— — =6>(T —1)| ] .
(&\/T—t [Og s T 0 )D

In the same way, we find

1 —u 'K
QL(5|ft) = QL(ZT < K7 Zt)
1 —u 'K 1
= Q. (& (WE—Wk) < log %g‘ —log Z, + 56° (T = t))

K —17 1.
lbg”‘bgmw“”‘”])‘

1
o ——
(&\/ T—1
This completes the proof. [

Standard arguments'® show that the trading strategy

00 = 1_1% { - —u'K)o(ef) — (K — () (e )}

1
o = {(1—u™ ) 0(ef) + (K — () u™" ®(e] )}
is admissible and replicates the option.

For / = 0 and u = 400, we obtain of course the option price formula of Black and
Scholes (1973) and Merton (1973) with & = 0. Setting v = 400 but £ > 0 leads to a
formula proposed by Rubinstein (1983).

The result is easily extended to allow a time-dependent, but deterministic, param-
eter function o(t) > 0 in Assumption (Q). Lemma 3.1 then holds with & replaced by
o(t) = (1 —u=*)o(t), and the term 6y/T — ¢ in Proposition 3.2 must be replaced with

(1 —u™'0) /T o%(s)ds.

t

The price of a generalised put option, that is, an option to give up one unit of asset
1 in exchange for A units of asset 0, can be calculated in the same way. Alternatively,
one can use a version of put-call parity.

4 Examples

This section shows how the models of Biihler and Kasler (1989), Miltersen, Sandmann
and Sondermann (1994) and Ingersoll (1989a, b) fit into the framework developed in
the previous sections.

10See for instance Harrison and Pliska (1981).

11



4.1 Options on Zero-Coupon Bonds

Fix dates 7" > T > 0 and let assets 0 and 1 be pure discount bonds without default
risk, maturing at T and 7", respectively. Without loss of generality, their face values
can be normalised to 1, i.e., S% = 1 and S}, = 1. Consider a standard Furopean call
option written on bond 1 with exercise price K and exercise date T'. As S$ = 1, this
call can be considered as an option to receive one unit of bond 1 in exchange for K
units of bond 0.

Biihler and Kasler (1989) propose a model where the bond prices satisfy S? < 1
for t < T and S} < S?Y for t < T. These inequalities follow directly from the postulate
that interest rates implied by bond prices ought to be positive. In fact, the former
inequality means that the interest rate for a loan from ¢ to 1" is positive, while the
latter states that the forward interest rate, as seen at time ¢, for the period from 7' to
T" is positive. In particular, Assumption (B) holds with v =1 and ¢ = 0.

More specifically, the relative price X; = S}/S? has the form

_ L—h(t) _w]”
X, = |[1+ h(t) e
where h : T —]0,1[ is a continuously differentiable function, o a positive constant
and W a standard Wiener process under the measure P. The process S is defined
similarly, but need not be specified here. Note that X, is the time ¢t forward price of
bond 1 for delivery at time T'. It is easily seen that h(¢) is the median value of this
forward price.

We want to show that this model satisfies Assumption (Q). [t6’s lemma yields

dXt = O'Xt (1 — Xt) {Oét dt + th}

with the bounded process

) 1
= o=k T (5 - X"‘) ‘

Define a process W° by
thO = O dt + th

and W = 0, and let Q¢ be the measure obtained via the Radon-Nikodym derivative

(as « is a bounded process, the random variable on the right hand side has indeed
expectation equal to 1). The Girsanov theorem implies that W is a Wiener process
under ()o. By construction, dX; = ¢ X; (1 — X;)dW}, so Assumption (Q) holds.
By Proposition 3.2, the arbitrage price of the call option with exercise price 0 <
K <1is
m(I) = (1 = K) S ®(ef) — K (5] — 57) @(ey)

12



with

1 Sh K 1
1 L1 + =0 (T —1)|.
VT B F—g ety T
This is the pricing formula derived by Biihler and Kasler (1989).
Miltersen, Sandmann and Sondermann (1994) obtain the same option price formula
in a model of the term structure of interest rates. To see how their approach fits into
the framework studied in the present paper, note that the variable

+ _
e =

1—X
Zy = A |
Xi

can be interpreted as the once compounded forward rate, as seen at time ¢, for a
loan given at T and repaid at T'. Miltersen, Sandmann and Sondermann start from
lognormal diffusion dynamics for the forward rate Z:

dZt = /,L(t)Zt dt —|— O'(t)Zt th

with deterministic functions g and ¢ > 0, and a Wiener process W under some measure
P. This can be rewritten as

d7; = o(t)Z; dWF
where W is the process defined by

[
dWE = dW, + ) dt
o(t)

with W& = 0. Granted sufficient regularity of the parameter functions,!! the Girsanov
theorem implies that W7 is a Wiener process under the measure (1, obtained via the
Radon-Nikodym derivative

([ 2L ).

According to our earlier results, this implies Assumption (Q) with the time-dependent

parameter function o(), hence the time-dependent volatility version of the Biihler-
Kasler bond option formula.

4.2 Currency Options in a Target Zone Regime

Consider an option to buy at some future date 7" one unit of a foreign currency for
K units of the domestic currency. If asset 0 is a default-free domestic discount bond
paying one domestic currency unit at time 7', and asset 1 its foreign counterpart,
then the currency option can be interpreted as the right to receive one unit of asset
1 in exchange for K units of asset 0. Note that S!, the domestic price of asset 1, is
the product of two factors: the spot exchange rate s, giving the number of domestic
currency units needed to purchase one unit of the foreign currency, and 5%/, the price

1 Boundedness of the ratio /o will do.

13



of asset 1 in foreign units. Assuming for simplicity that the domestic interest rate ry
and the foreign interest rate r; are constant, we clearly have

S? =¢ ' (T_t), Stl’f =T and S% =5, '/ (T=1),

By covered interest rate parity, X; = S}/S? is now just the time ¢ forward rate for
currency exchange at time T'.

Ingersoll (1989a) models a perfectly credible target zone regime by imposing the
condition

§(t) < s <E(1)
with deterministic functions ¢ and =Z. He shows that not every pair of boundary
functions is admissible. Given £(0) and =(0), the tightest possible bounds are in fact

) =
=(t) =

(0) e(r’d—r’f)t7
(0) elra=rolt,

Iy

[1]

For these functions, the above condition translates into
E(T)S) < Sy <E(T)8,

that is, Assumption (B) with ¢ = ¢{(T') and v = =Z(T).
As for the spot rate dynamics, one of the models studied in Ingersoll (1989a) has

ds; = psedt 4+ o [s¢ — E(D)][1 — s¢/=(t)] dW;

with an unspecified drift rate process p, a Wiener process W and the above boundary
functions. By It6’s lemma, the corresponding forward rate dynamics are

dX, = (s + 7 — ra) X dt + o [X, — E(T][L — X, /Z(T)] dW,,

which, under suitable conditions on g, implies Assumption (Q). If so, the arbitrage
price of the currency option is given by Proposition 3.2 and can be written as

— K/=(T)

m(l) = [s— &) 3’f11_§(T) L ol
(1= sy/Z(0] 89— (Tﬁg 0le7)
with | 0 K — &(T) |
e;t: /T — 1 logl—tSt/E(t) —1OgT/E(T)j:§&2(T—t)

and 6 = [1 — &(T)/Z(T)]o. This is the same result as in Ingersoll (1989a).

An extension of this analysis to ‘futures-style’ options (futures contracts on option
payoffs) is presented in Ingersoll (1989b). Assuming a quadratic diffusion term for
the underlying futures price, Ingersoll calculates valuation formulae similar to the one
above. Again, the results of Sections 2 and 3 apply.
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5 Conclusion

We have studied the pricing of a European-type option to exchange one asset for
another in the presence of strict upper and lower bounds on the relative price of these
assets. Our first result shows how to decompose the option price in terms of two
particular numeraire portfolios and the probabilities of exercise under the martingale
measures associated with these numeraires. This decomposition is particularly useful in
models where the relative asset price has a quadratic diffusion coefficient. The second
contribution of the paper is a new derivation of the option price in this class of models.
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